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how does the ball know where to roll??

It doesn't. It just follows
Newton's laws at every
Instant in time

F=ma



how does the ball know where to roll??

It doesn't. It just follows Every path has a score called
Newton's laws at every “action”. The actual path is
instant in time the one with the lowest score

F=ma /og dt
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How do plants respond to drought stress?

What are plants optimizing for?

What are the most important traits that explain the
plant’s behavior?

How do different plant species differ in their water
management strategies?
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what | care about

water use
3 efficiency 1

resilience
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3.5 riskpolicy 5
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< gMXis F(soil water)
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water use efficiency
\ O assimilation

O transpiration

vulnerability to dry soil
E...« = k x soil water
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strateqgy 2: beware of what's ahead

Instantaneous maximization

of A(g,) depleats soil H=A(g,)—A-E(g,)
moisture fast

T
plant should maximize B |
A(g,) over time interval T H = ? J'OA(gS)dt—/l ‘ E(gs)

Cowan & Farguhar (1977), Makela et al. (1996),
Manzoni et al. (2013), Mrad et al. (2019)
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