Optimal stomatal control

Yair Mau

$$t_1 = \frac{d_1}{v_1}$$

Beach

$\frac{\sin(\theta_1)}{v_1} = \frac{\sin(\theta_2)}{v_2}$

Air

Air

Air

Air

Snell's Law of refraction $sin(\theta_2)$

Rough Felt

Smooth Felt

Johann Bernoulli

1696 the brachistochrone problem

$x = r(t - \sin t)$ $y = r(1 - \cos t)$

cycloid

cycloid

Johann Bernoulli

Gottfried Wilhelm Leibniz

lsaac Newton

Joseph-Louis Lagrange

Lev Pontryagin

Leonhard Euler

Richard E. Bellman

Johann Bernoulli

Gottfried Wilhelm Leibniz

lsaac Newton

Joseph-Louis Lagrange

Lev Pontryagin

Leonhard Euler

calculus of variations optimal control

dynamic programming

Richard E. Bellman

how does the ball *know* where to roll??

how does the ball *know* where to roll??

It doesn't. It just follows Newton's laws at every instant in time

F=ma

how does the ball know where to roll??

It doesn't. It just follows Newton's laws at every instant in time

F=ma

Every path has a score called "action". The actual path is the one with the lowest score

 $\mathcal{L}dt$

observed path

instantaneous rule

global principle

instantaneous rule

X

global principle

 $sin(\theta_{2})$

 V_{2}

min time

instantaneous rule

X

global principle

 $V \gamma$

min time

Fermat's principle

observed path

instantaneous rule

global principle

instantaneous rule

X

global principle

F=ma

$\int \mathcal{L} dt$

instantaneous rule

instantaneous rule

global principle

min energy

instantaneous rule

instantaneous rule

$y = \frac{1}{a}\cosh(ax)$

global principle

catenary

min potential

instantaneous rule

instantaneous rule

X

global principle

Standard Model Formula

min action

Optimal stomatal control

Yair Mau

instantaneous rule

instantaneous rule

instantaneous rule

global principle

stomatal opening

X

instantaneous rule

global principle

X

How do plants respond to drought stress?

What are plants optimizing for?

What are the most important traits that explain the plant's behavior?

How do different plant species differ in their water management strategies?

acceleration 1 top speed 4 weight 5

- intelligent agent
- perceives its environment
- takes actions autonomously
- in order to achieve goals
- may improve its performance with learning or may use knowledge

agent

environment

agent

environment

agent

goal

- intelligent agent
- perceives its environment
- takes actions autonomously
- in order to achieve goals
- may improve its
 - performance with learning or may use knowledge

keywords: artificial intelligence, machine learning, reinforcement learning, optimal control theory

- intelligent agent
- perceives its environment
- takes actions autonomously
- in order to achieve goals
- may improve its performance with learning or may use knowledge

what I care about

- water use efficiency
- resilience to drought

5

strategy 1: drive at full throttle

there's only here and now

tomorrow? who cares

there's only here and now

tomorrow? who cares

instantaneously optimize $H = A(g_s) - \lambda \cdot E(g_s)$ $\lambda = \frac{\partial A}{\partial E}$ water use efficiency $g_{s}(t)$ is such that H is maximum

tomato: 12-day drydown

mmo

tomato: 12-day drydown

INPUT	

maximize carbon assimilation

conservation of water soil water \rightarrow transpiration

INPUT

maximize carbon assimilation

conservation of water soil water \rightarrow transpiration

 $\begin{array}{l} \bigcirc & 0 < g_s < g_s^{\text{max}} \\ g_s^{\text{max}} \text{ is f(soil water)} \end{array}$

$g_s(\text{VPD}, \text{light}, \text{T}, \text{CO}_2)$

water use efficiency vulnerability to drought

Result 1

validation results are consistent with instantaneous optimization

Result 1

validation results are consistent with instantaneous optimization

instantaneous rule

 $\widetilde{g_s} = \frac{k_1(C_a - k_2 - 2\Gamma^*)}{\beta^2} + (\beta - 2\alpha D\lambda)k_1 \frac{\sqrt{\alpha D\lambda(C_a - \Gamma^*)(k_2 + \Gamma^*)(\beta - \alpha D\lambda)}}{\alpha D\lambda\beta^2(\beta - \alpha D\lambda)}$

b plant traits

water use efficiency $\lambda = \frac{\partial \text{ assimilation}}{\partial \text{ transpiration}}$

b plant traits

water use efficiency $\lambda = \frac{\partial \text{ assimilation}}{\partial \text{ transpiration}}$

vulnerability to dry soil $E_{\max} = k \times \text{soil water}$

Result 3

(obvious) surprise

(extensive parameters) pot size and leaf area

(intensive parameters) photosynthetic params.

instantaneous maximization of $A(g_s)$ depleats soil moisture **fast**

$H = A(g_s) - \lambda \cdot E(g_s)$

instantaneous maximization of $A(g_s)$ depleats soil moisture *fast*

 $H = A(g_s) - \lambda \cdot E(g_s)$

plant should maximize $A(g_s)$ over time interval T $H = \frac{1}{T} \int_{0}^{T} A(g_s) dt - \lambda \cdot E(g_s)$

instantaneous maximization of $A(g_s)$ depleats soil moisture *fast*

Cowan & Farquhar (1977), Mäkelä et al. (1996), Manzoni et al. (2013), Mrad et al. (2019)

 $H = A(g_s) - \lambda \cdot E(g_s)$

plant should maximize $A(g_s)$ over time interval T $H = \frac{1}{T} \int_{0}^{T} A(g_s) dt - \lambda \cdot E(g_s)$

instantaneous maximization

time integral $\frac{1}{T} \int_{0}^{T} A(g_{s}) dt$

time integral $\frac{1}{T} \int_{0}^{T} A(g_{s}) dt$

time integral $\frac{1}{T} \int_{0}^{1} A(g_{s}) dt$

time integral $\frac{1}{T} \int_{0}^{I} A(g_{s}) dt$

when future is uncertain present > future

discount = horizon

100%

cares

how much plant

0%

100% cares discount = horizon how much plant e ∞ instantaneous "here and now" 0%

5 days

100% cares discount = horizon how much plant 0%

short time horizon

"there's only present" opt.

risk-taking

anisohydric

 $\rho \rightarrow 0$

short time horizon

"there's only present" opt.

risk-taking

anisohydric

long time horizon "present = future" opt.

risk-averse

isohydric

short time horizon

"there's only present" opt.

risk-taking

anisohydric

exploration

long time horizon "present = future" opt.

risk-averse

isohydric

take-home message

observed path

instantaneous rule global principle

