Optimal stomatal control

Yair Mau

Snell's Law of refraction $\frac{\sin \left(\theta_{1}\right)}{v_{1}}=\frac{\sin \left(\theta_{2}\right)}{v_{2}}$

Rough
Felt

Smooth

Felt

1696
the brachistochrone problem

$$
\begin{aligned}
& x=r(t-\sin t) \\
& y=r(1-\cos t)
\end{aligned}
$$

cycloid

cycloid

(T)

$$
\underline{Q}
$$

how does the ball know where to roll??
how does the ball know where to roll??

It doesn't. It just follows
Newton's laws at every instant in time

F=ma

how does the ball know where to roll??

It doesn't. It just follows
Newton's laws at every instant in time

Every path has a score called
"action". The actual path is
the one with the lowest score

F=ma

$$
\int \mathscr{L} d t
$$

observed path

instantaneous rule

global principle

min time
(1)
observed path

instantaneous rule

global principle

min time 0

min action
 $\int \mathscr{L} d t$

observed path

instantaneous rule

Young-Laplace
global principle

min energy

observed path

instantaneous rule

$y=\frac{1}{a} \cosh (a x)$
catenary
global principle

min potential

observed path

instantaneous rule

$$
\begin{aligned}
\mathcal{L} & =-\frac{1}{4} F_{m} F^{n N} \\
& +i F^{n} \phi \psi+h \cdot c \\
& +\psi y_{i j} \not \psi_{3} \phi+h \cdot c \\
& +\left|D_{n} \phi\right|^{2}-V(\phi)
\end{aligned}
$$

Standard Model Formula
global principle

$\int^{\min } \mathscr{L} d^{n} s$

Optimal stomatal control

Yair Mau
observed path

instantaneous rule
global principle
instantaneous rule

stomatal opening

$$
g_{s}(?)
$$

global principle

$$
g_{s}(?)
$$

instantaneous rule

global principle

How do plants respond to drought stress?

What are plants optimizing for?

What are the most important traits that explain the plant's behavior?

How do different plant species differ in their water management strategies?

$$
\frac{\text { se }}{x}
$$

- intelligent agent
- perceives its environment
- takes actions autonomously
- in order to achieve goals
- may improve its
performance with learning or may use knowledge

agent

environment
agent

goal

max(carbon) goal
- intelligent agent
- perceives its environment
- takes actions autonomously
- in order to achieve goals
- may improve its
performance with learning or may use knowledge

keywords: artificial intelligence, machine learning, reinforcement learning, optimal control theory
- intelligent agent
- perceives its environment
- takes actions autonomously
- in order to achieve goals
- may improve its
performance with learning or may use knowledge

what I care about

strategy 1: drive at full throttle

- there's only here and now
- tomorrow? who cares

strategy 1: drive at full throttle

- there's only here and now
- tomorrow? who cares

strategy 1: drive at full throttle

 instantaneously optimize$H=A\left(g_{s}\right)-\lambda \cdot E\left(g_{s}\right)$

$g_{s}(t)$ is such that H is maximum

∂A

tomato: 12-day drydown

tomato: 12-day drydown

tomato: 12-day drydown

INPUT

maximize carbon assimilation

conservation of water soil water \rightarrow transpiration

$0<g_{s}<g_{s}^{\max }$
$g_{s}^{\max }$ is f (soil water)
maximize carbon assimilation
$g_{s}\left(\mathrm{VPD}\right.$, light, $\left.\mathrm{T}, \mathrm{CO}_{2}\right)$
conservation of water soil water \rightarrow transpiration
water use efficiency

$$
\begin{aligned}
& 0<g_{s}<g_{s}^{\max } \\
& g_{s}^{\max } \text { is f(soil water) }
\end{aligned}
$$ vulnerability to drought

Result 1

validation

results are consistent with instantaneous optimization

Result 1

validation
 results are consistent with instantaneous optimization

instantaneous rule

$$
\widetilde{g}_{s}=\frac{k_{1}\left(C_{a}-k_{2}-2 \Gamma^{*}\right)}{\beta^{2}}+(\beta-2 \alpha D \lambda) k_{1} \frac{\sqrt{\alpha D \lambda\left(C_{a}-\Gamma^{*}\right)\left(k_{2}+\Gamma^{*}\right)(\beta-\alpha D \lambda)}}{\alpha D \lambda \beta^{2}(\beta-\alpha D \lambda)}
$$

Result 2

plant traits

Result 2

plant traits

water use efficiency
$\lambda=\frac{\partial \text { assimilation }}{\partial \text { transpiration }}$

Result 2

plant traits

water use efficiency
$\lambda=\frac{\partial \text { assimilation }}{\partial \text { transpiration }}$
vulnerability to dry soil
$E_{\max }=k \times$ soil water

Result 2

5 plant traits

water use efficiency
$\lambda=\frac{\partial \text { assimilation }}{\partial \text { transpiration }}$
vulnerability to dry soil $E_{\max }=k \times$ soil water

water use efficiency

Result 3

(obvious) surprise

(extensive parameters) pot size and leaf area
(intensive parameters) photosynthetic params.

strategy 2: beware of what's ahead

strategy 2: beware of what's ahead

instantaneous maximization
of $A\left(g_{s}\right)$ depleats soil

$$
H=A\left(g_{s}\right)-\lambda \cdot E\left(g_{s}\right)
$$ moisture fast

strategy 2: beware of what's ahead

instantaneous maximization
of $A\left(g_{s}\right)$ depleats soil $\quad H=A\left(g_{s}\right)-\lambda \cdot E\left(g_{s}\right)$ moisture fast
plant should maximize $A\left(g_{s}\right)$ over time interval T

$$
H=\frac{1}{T} \int_{0}^{T} A\left(g_{s}\right) d t-\lambda \cdot E\left(g_{s}\right)
$$

strategy 2: beware of what's ahead

instantaneous maximization
of $A\left(g_{s}\right)$ depleats soil $\quad H=A\left(g_{s}\right)-\lambda \cdot E\left(g_{s}\right)$ moisture fast
plant should maximize $A\left(g_{s}\right)$ over time interval T

$$
H=\frac{1}{T} \int_{0}^{T} A\left(g_{s}\right) d t-\lambda \cdot E\left(g_{s}\right)
$$

Cowan \& Farquhar (1977), Mäkelä et al. (1996), Manzoni et al. (2013), Mrad et al. (2019)

instantaneous maximization

$A\left(g_{S}\right)$

short time horizon long time horizon
"present = future" opt.risk-averse

short time horizon

 "there's only present" opt. risk-takinganisohydric

long time horizon

"present = future" opt.

 risk-averse isohydric$\rho \rightarrow 0$
$\rho \rightarrow \infty$
exploration

take-home message

instantaneous rule global principle

