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Spatial periodic forcing of pattern-forming systems is an important, but lightly studied, method of

controlling patterns. It can be used to control the amplitude and wave number of one-dimensional periodic

patterns, to stabilize unstable patterns, and to induce them below instability onset. We show that, although

in one spatial dimension the forcing acts to reinforce the patterns, in two dimensions it acts to destabilize

or displace them by inducing two-dimensional rectangular and oblique patterns.
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Pattern formation phenomena are found in a wide
variety of physical, chemical, and biological contexts.
Examples include embryonic pattern formation [1], car-
diac arrhythmias [2], bacterial colonies [3], nanoparticle
assemblies [4], two-phase mixtures [5], thermal convection
[6], nonlinear optics [7], chemical [8] and electrochemical
reactions [9], and environmental pattern formation [10].
In some contexts, pattern formation is essential for the
functioning of the system. This is the case with embryonic
pattern formation or with vegetation patterning—a mecha-
nism by which vegetation copes with water stress. In other
contexts, pattern formation is an undesired outcome. This
is the case with spiral waves in the heart muscle [11],
dewetting of liquid films [12], or spatial patterning in the
transverse directions of a laser beam [13]. In order to
eliminate, modify, or induce patterns, means of controlling
and manipulating them are needed. These means may
consist of basic parameter tuning or may involve external
intervention such as feedback control [14] or periodic
forcing in time [15] and space [16].

Control of periodic patterns by spatial periodic forcing is
achieved by locking the pattern’s wave number, k, to a
rational fraction of the forcing wave number, kf. The

locking typically occurs over a limited wave-number range
that increases with the forcing amplitude—the ‘‘resonance
tongue.’’ Within this range, the wave number of the locked
or resonant pattern is controllable by tuning the forcing
wave number.

Recent studies have shown that parametric one-
dimensional (1d) spatial forcing of systems supporting
stationary stripe patterns can also induce resonant two-
dimensional (2d) patterns of rectangular and oblique forms
[16,17]. Such patterns exist over a wide range of forcing

wave numbers that includes resonance tongues of stripe
patterns, in particular, the basic 1:1 (k ¼ kf) resonance,

which would generally be the first choice for control. In
this Letter, we address the question of how the 2d rectan-
gular and oblique patterns interfere with the control of
stripe patterns.
Focusing on universal aspects of spatially forced

pattern-forming systems, we study the Swift-Hohenberg
(SH) equation as a minimal model that captures the rele-
vant mathematical construct of a stationary nonuniform
instability of a stationary uniform state [18]. Adding para-
metric forcing, the equation reads

ut ¼ "u� ðr2 þ k20Þ2u� u3 þ �u cosðkfxÞ; (1)

where " is the distance from the pattern-forming instability
of the uniform stationary state, u ¼ 0, of the unforced
system; k0 �Oð1Þ is the wave number of the mode that
begins to grow at the instability point; kf is the forcing

wave number; and � > 0 is the forcing amplitude [19].
Resonant stripe patterns of Eq. (1) exist in tongue-shaped

domains in the forcing parameter plane kf=k0��. We begin

by identifying these domains for patterns near the instability
point j"j � 1. We consider Eq. (1) in 1d and approximate
the resonant stripe solutions as

u � A expðikxÞ þ c:c:; k ¼ kf
n
; (2)

where the amplitude A is small, jAj �Oð ffiffiffiffiffiffij"jp Þ, and slowly

varying in space and time, jAxj �Oðj"jÞ, jAtj �Oðj"j3=2Þ,
and c.c. stands for the complex conjugate. The parameter
n ¼ 1; 2; . . . is an integer representing the type of resonance
kf:k ¼ n:1. Within and in the vicinities of the resonant

tongues, the detunings �n ¼ k0 � kf=n from the exact

resonances n:1 are small. Assuming �n �Oð ffiffiffiffiffiffij"jp Þ,
��Oð ffiffiffiffiffiffij"jp Þ and using multiple-scale analysis to order

j"j3=2, we find the amplitude equation
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At ¼ "A� 3jAj2A� ð2ik0@x þ 2k0�nÞ2A
þ

�
�

2

�
2½ðdþ þ d�ÞAþ �n;1d�A?�; (3)

where

d� ¼ 1

k2fðkf � 2k0Þ2
(4)

and �n;1 is the Kronecker delta. Note that d� diverges

for kf ¼ �2k0, that is, for the exact 2:1 resonance. This

resonance, which requires a different scaling of the forcing,
��Oðj"jÞ, was studied earlier [17].

Constant solutions of Eq. (3) represent n:1 wave-number-
locked, or resonant, stationary stripe patterns. For n � 2,
they have the form

A¼�nexpði�Þ; �n¼ 1ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"�ð2k0�nÞ2þd�2=4

q
; (5)

with d ¼ dþ þ ð1þ �n;1Þd�. The phase � is constant and

equal to zero for n ¼ 1 but undetermined for higher reso-

nances for the order j"j3=2 of our calculation. The resonant
stripe solutions exist for � > �n, where

�n ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2k0�nÞ2 � "

d

s
: (6)

Wave-number-locked patterns corresponding to the 2:1
resonance have the form [17]

A ¼ �2 expði�Þ; �2 ¼ 1ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"� ð2k0�2Þ2 þ �=2

q
;

(7)

with � ¼ 0; �. These solutions exist for �> �2, where

�2 ¼ 2½ð2k0�2Þ2 � "�: (8)

Figure 1 shows the tongue-shaped existence ranges of
n:1 resonant stripe patterns with n ¼ 1; . . . ; 4, for parame-
ters above, " > 0, and below, " < 0, the pattern-forming
instability. The solid lines in the figure are the results of
the analysis from Eqs. (5) and (7), and the shaded regions
are numerical results from solving for stationary solutions
of the SH equation (1) using a continuation method [20].

Of all resonances shown in Fig. 1, the 2:1 resonance
region stands out in its robustness. It is wider and, for
" < 0, i.e., below the pattern-forming instability, it appears
at lower forcing amplitude �. This is because the forcing is
parametric, involving the linear term in the SH equation.
Parametric forcing of higher-order terms will single out
higher resonances.

A stronger expression of the special role the 2:1 reso-
nance plays appears in two-space dimensions. In that case,

a purely 1d forcing, kf ¼ kfx̂, can induce stable 2d

patterns [17]—oblique patterns for � < " and rectangu-
lar patterns for � > ". These are resonant patterns
that respond to the spatial forcing by locking the
wave vector components in the forcing direction in
2:1 resonance, kx ¼ kf=2, and creating a wave vector

component in the orthogonal direction, ky, to compensate

for the unfavorable forcing wave number, so that
k2x þ k2y ¼ k20.

The range of existence of these new 2d patterns is very
wide in the forcing wave number kf but bounded from above

by the 2:1 resonance of stripe patterns, i.e., 0<kf<2k0,

since at kf ¼ 2k0 the component kx attains its maximal

possible value, k0. Figure 2 shows the existence domains of
resonant rectangular and oblique patterns superimposed
onto the tongue diagram of resonant 1:1 and 2:1 stripe
patterns.
We now address the overlap domains of rectangular and

oblique patterns with the 1:1 resonance tongue of stripe
patterns. In order to study the interaction of the patterns,
we approximate solutions to Eq. (1) as a superposition of
a stripe mode and two oblique modes

u � Aeikfx þ aeiðkxxþkyyÞ þ beiðkxx�kyyÞ þ c:c:; (9)

where kx ¼ kf=2 and ky ¼ ffiffiffiffiffiffiffiffiffiffi
k2
0
�k2x

p
. Using multiple-scale

analysis, we find the amplitude equations [21]

FIG. 1. Existence domains of resonant stripe solutions of
Eq. (1) (a) above the pattern-forming instability (" > 0) and
(b) below it (" < 0). The shaded regions indicate the range of
resonant solutions computed from stationary solutions of
Eq. (1), and the solid curves show the approximate boundary
of resonant solutions based on the amplitude equation approach.
The agreement for the lower resonances is very good for suffi-
ciently small � values, and for the higher resonances it remains
surprisingly good, even for large � values. Parameters:
(a) " ¼ 0:001, (b) " ¼ �0:001.
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At ¼ "A� 3ðjAj2 þ 2jaj2 þ 2jbj2ÞA� ð2k0�Þ2A

þ
�
�

2

�
2½Aðdþ þ d�Þ þ A?d��;

at ¼ "a� 3ðjaj2 þ 2jbj2 þ 2jAj2Þaþ �

2
b? þ

�
�

2

�
2
d2a;

bt ¼ "b� 3ðjbj2 þ 2jaj2 þ 2jAj2Þbþ �

2
a? þ

�
�

2

�
2
d2b;

(10)

where d2 ¼ 1=ð2k2fÞ2.
Solutions of (10) of the form ðA; 0; 0Þ represent 1:1 stripe

patterns, while solutions of the form ð0; a; bÞ represent 2d
patterns. Stationary stripe solutions are given by A ¼ �1,
where �1 is given by Eq. (5) with n ¼ 1. Stationary rect-
angular solutions are given by a ¼ �Re

i�, b ¼ �Re
�i�,

where � is an arbitrary phase and

�R ¼ 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
~"þ �

2

r
; ~" ¼ "þ d2

�
�

2

�
2
; (11)

while stationary oblique solutions are given by a ¼ ��
Oe

i�,

b ¼ ��
Oe

�i�, where

��
O ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~"� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~"2 � �2
p
6

s
: (12)

To see how the 2d resonant patterns affect the stability of
the 1:1 resonant stripes, we analyze the stability of the
solution ðA; a; bÞ ¼ ð�1; 0; 0Þ. The eigenvalue analysis of
the two oblique modes shows that the stability region of the
stripe solution is smaller than the existence region and has
two distinct shapes, depending on the value of ". For larger

values, " > "c ¼ 9=143, there is a continuous � range in
which stripe solutions are stable, while, for " < "c, the
stability range is split into two ranges. Figure 3 shows the
shapes of the stable solution ranges for two values of ",
one above and one below the critical value "c. The signifi-
cance is that for " < "c there is an intermediate range of
forcing amplitude � where the forcing destabilizes the
stripe patterns even at exact resonance kf ¼ k0 [22]. This

is in contrast to the behavior of 1d systems for which the
forcing always acts to stabilize the stripe patterns.
The stability ranges of both the 1:1 and 2:1 stripe

patterns are actually bistability ranges of the stripes and
2d patterns [23]. This raises the question of which pattern
is dominant; that is, which pattern invades the other in
these ranges. To study this question, we calculated the
energy (Lyapunov) functional of Eq. (1),

L¼
Z
dr

�
�1

2
½"þ�cosðkfxÞ�u2þ1

4
u4þ1

2
ðr2uþk20uÞ2

�
;

using the analytic forms of the approximate stripe, rectan-
gular, and oblique solutions; the pattern that has lower
energy is dominant.
Figure 4 shows the energies of rectangular patterns,

resonant 1:1 stripe patterns, and resonant 2:1 stripe pat-
terns, in their existence range along the kf=k0 axis. The

energy of the 1:1 stripe pattern is higher than that of the
rectangular pattern, implying that the latter is dominant.
This is supported by numerical solutions of Eq. (1), accord-
ing to which the rectangular patterns invade the 1:1 stripe,
as the snapshots in Fig. 4(a) show. This result holds even at
exact resonance (kf ¼ k0). The situation is different within

the resonance range of 2:1 stripes; the energies of the stripe
and rectangular patterns cross one another and split the
range into a low-kf part where the rectangular patterns are

dominant and a high-kf part where the stripe pattern is

FIG. 2 (color online). The existence domains of resonant rect-
angular and oblique patterns are very wide and overlap with the
resonance tongues of 1:1 and 2:1 stripe patterns. The domain
size for all four patterns is 30� 30. Parameters: " ¼ 0:1.

FIG. 3. Existence and stability domains of 1:1 resonant stripe
solutions of Eqs. (10). The shaded areas indicate the existence
domains, and the dark shaded areas are the stability regions.
(a) Above the critical value, " > "c, the stable region is con-
tiguous. (b) Below the critical point, " < "c, the solution is not
stable in a range of forcing amplitude �, even at exact resonance
kf ¼ k0. Parameters: (a) " ¼ 0:1, (b) " ¼ 0:05.
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dominant. Indeed, numerical solutions of Eq. (1) show that
in the low-kf part the rectangular pattern invades the stripe

pattern [Fig. 4(b)] and in the high-kf part the stripe pattern

invades the rectangular pattern [Fig. 4(c)].
Two intriguing results stand out in the analysis described

above: (1) the most obvious control practice, i.e., 1:1
periodic forcing, can destabilize the stripe pattern it is
intended to control and (2) even when the forcing leaves
the stripes linearly stable, the stripes are displaced by the
2d patterns that the forcing induces. These are counter-
intuitive results because, naively, we would expect the
forcing to reinforce the stripe patterns. The forcing indeed
reinforces the stripe patterns by increasing their amplitudes
[see Eq. (5)] and widening their wave-number range, but
it also induces the growth of the oblique modes which
either destabilize or displace the stripe patterns.

These outcomes may have important implications for
practical applications of spatial forcing in various fields of
science, including nonlinear optics [24,25] and restoration

ecology. An interesting example of the latter field is reha-
bilitation of banded vegetation on hill slopes by water
harvesting [26]. Water-harvesting methods often involve
parallel contour ditches that accumulate runoff and along
which the vegetation is planted [27]. Our results suggest
that the system may not respond as expected in a 1:1
resonance but rather form 2d patterns that involve long-
lasting processes of mortality and regrowth. Because the
analysis is based on universal amplitude equations near
an instability point, we expect it to hold for a wide variety
of spatially forced systems.
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