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The entrainment of periodic patterns to spatially periodic parametric forcing is studied. Using a weak nonlinear
analysis of a simple pattern formation model we study the resonant responses of one-dimensional systems that lack
inversion symmetry. Focusing on the first three n : 1 resonances, in which the system adjusts its wavenumber
to one nth of the forcing wavenumber, we delineate commonalities and differences among the resonances.
Surprisingly, we find that all resonances show multiplicity of stable phase states, including the 1 : 1 resonance.
The phase states in the 2 : 1 and 3 : 1 resonances, however, differ from those in the 1 : 1 resonance in remaining
symmetric even when the inversion symmetry is broken. This is because of the existence of a discrete translation
symmetry in the forced system. As a consequence, the 2 : 1 and 3 : 1 resonances show stationary phase fronts
and patterns, whereas phase fronts within the 1 : 1 resonance are propagating and phase patterns are transients.
In addition, we find substantial differences between the 2 : 1 resonance and the other two resonances. While the
pattern forming instability in the 2 : 1 resonance is supercritical, in the 1 : 1 and 3 : 1 resonances it is subcritical,
and while the inversion asymmetry extends the ranges of resonant solutions in the 1 : 1 and 3 : 1 resonances, it
has no effect on the 2 : 1 resonance range. We conclude by discussing a few open questions.
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I. INTRODUCTION

Spatial periodic forcing can be used to control and ma-
nipulate pattern forming systems [1–4]. In model equations
the forcing appears either parametrically, by multiplying a
dynamical variable, or additively. The latter case has been
studied in the contexts of optical patterns in photorefractive
feedback systems [5], Rayleigh-Bénard convection [6], and
Turing patterns in chemical reactions [3]. Parametric forcing
is relevant to the restoration of banded vegetation on hill slopes
by water harvesting [7–9].

General aspects of pattern-forming systems can often be
captured by analyzing simple pattern formation models. A
widely used model of this kind is the Swift-Hohenberg (SH)
equation, originally introduced in the context of fluid con-
vection [10]. The SH equation can be viewed as the simplest
model that captures a nonuniform stationary instability, i.e., an
instability that renders a uniform state unstable and gives rise
to a stationary periodic pattern. In a series of recent works we
used the SH equation to study spatial parametric forcing as a
means of stabilizing patterns, extending their existence range,
controlling their wavenumbers and amplitudes, and creating
new patterns [11–14].

In all these studies we used the original form of the SH equa-
tion, which has an inversion symmetry (u → −u). However,
pattern forming systems often lack such a symmetry. In thermal
convection, the so-called “up-down” symmetry is broken when
fluids with temperature-dependent properties are used (non-
Oberbeck-Boussinesq convection) [15]. Models of chemical
reactions, such as the Lengyel-Epstein model for the CDIMA
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reaction [3], generally lack inversion symmetry in all settings,
and the same holds for models of dryland vegetation [16].

In this paper we use a modified SH equation that includes a
quadratic term to study the effect of linear parametric forcing
on pattern formation in 1D systems that lack inversion sym-
metry. Using a weak nonlinear analysis we study the first three
resonances n : 1, n = 1, 2, 3, in which the system responds
to the forcing with wavenumbers that are one nth of the
forcing wavenumber. Interestingly, the effect of the quadratic
term on different resonances manifests itself differently; in
some respects the 1 : 1 resonance shows different behaviors
from those of the other two, while in other respects the 2 : 1
resonance stands out.

The paper is organized as follows. We begin in Sec. II
by presenting the modified SH equation that we study. In
Sec. III we use a multiple scales analysis to derive an
amplitude equation for one-dimensional n : 1 wavenumber-
locked solutions of the modified SH equation. In Sec. IV
we study constant solutions of the amplitude equation for the
different resonances, investigating their existence and stability
ranges, both analytically and numerically. The implications of
this study for phase patterns are addressed in Sec. V, while
a summary of all results and a discussion of open questions
conclude the paper in Sec. VI.

II. THE MODEL EQUATION

The modified SH equation to be studied here is

∂u

∂t
= εu + λu2 − (∇2 + k2

0

)2
u − u3 + γ u cos (kf x), (1)

where, in the unforced system, ε represents the distance from
the pattern forming instability of the zero state and k0 ∼ O(1)
is the wavenumber of the first mode to grow at the instability
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point and also the wavenumber of the resulting stationary
pattern. The inversion symmetry, u → −u, is broken by the
quadratic term, where λ is assumed to be of order unity. The
parametric forcing is controlled by the wavenumber kf and
strength γ . Since Eq. (1) is invariant under the transformation
γ → −γ and x → x + π/kf , we will choose to consider only
positive values of the forcing γ . We will also restrict ourselves
to positive values of λ; the results for negative λ can then be
obtained by changing the sign of u.

The forced SH Eq. (1) is gradient, i.e., it has a Lyapunov
(or energy) functional L, in terms of which it reads

∂u

∂t
= −δL

δu
, (2)

where δ denotes the variational derivative, and

L =
∫

dr
{

1

2

(∇2u + k2
0u

)2

− [ε + γ cos (kf x)]
u2

2
− λ

u3

3
+ u4

4

}
. (3)

III. DERIVATION OF THE AMPLITUDE EQUATION

We consider Eq. (1) near the instability of the zero solution
(|ε| � 1) and assume weak forcing (γ � 1). The periodic
solutions that appear beyond the instability point have small
amplitudes that vary weakly in time and space. Using ε as a
small parameter, we expand solutions of Eq. (1) as

u =
∞∑
i=1

|ε|i/2ui(x0,x1,t1,x2,t2, . . .), (4)

where xj = |ε|j/2x and tj = |ε|j/2 t are the “slow” space and
time variables for j �= 0 and “fast” for j = 0. With these
choices of space and time variables the derivatives in Eq. (1)
transform according to

∂x =
∞∑
i=0

|ε|i/2∂xi
, ∂t =

∞∑
i=1

|ε|i/2∂ti . (5)

We further expand the forcing strength as a power series in ε:

γ =
∞∑

j=1

|ε|j/2�j , �j ∼ O(1). (6)

This form will allow us to use different scalings of γ with ε

for different resonances, if needed. Finally, we assume that
the forcing wavenumber, kf , is close to a multiple of k0,
that is, kf ≈ nk0, where n is an integer, and quantify this
proximity to exact resonance by introducing a small detuning
parameter ν:

ν = k0 − kf /n = |ε|1/2ν1, ν1 ∼ O(1). (7)

Substituting Eqs. (4)–(6) into Eq. (1) we obtain the
following linear equations at successive orders of |ε|1/2:

|ε|1/2 : L 2u1 = 0, (8a)

|ε|2/2 : L 2u2 = λu2
1 + �1u1 cos(x0kf ) − ∂t1u1

− 4L M0,1u1, (8b)

|ε|3/2 : L 2u3 = u1 + 2λu1u2 − u3
1

− 4M 2
0,1u1 − ∂t2u1 − ∂t1u2

+ (�1u2 + �2u1) cos(x0kf )

− 2L (2M0,2u1 + M1,1u1 + 2M0,1u2),

(8c)

where L = M0,0 + k2
0 and Mi,j = ∂xi

∂xj
. The solution of

Eq. (8a), which provides the leading order approximation,
reads

u1 = A(x1,t1, . . .)e
ik0x0 + c.c., (9)

where the complex-valued amplitude A depends on the slow
variables and c.c. stands for complex conjugate.

The next order contribution, u2, satisfies Eq. (8b). The right-
hand side of this equation contains secular terms that need to
be eliminated in order for u2 to represent a higher harmonics
of exp(ik0x). Applying this solvability condition we find

∂t1A = δn,2
�1

2
A
e−2iν1x1 , (10)

where δi,j is the Kronecker δ and 
 denotes complex
conjugation. For all resonances with n �= 2 the right-hand
side of Eq. (10) vanishes and, consequently, the solvability
condition does not contribute to the amplitude equations
of these resonances. In the case of the 2 : 1 resonance the
right-hand side of Eq. (10) does not vanish. It, however,
consists of a linear term that, on the time scale t1, can lead
to exponentially growing solutions with no other terms to
balance the exponential growth. Nonlinear terms capable of
balancing exponential growth will appear at the next order of
the analysis but such terms represent smaller contributions. To
resolve this inconsistency we set �1 = 0 for n = 2, which
is equivalent to choosing a different scaling of γ with ε

for the 2 : 1 resonance [see Eq. (6)]. We accomplish this
constraint on �1 by multiplying it by the factor (1 − δn,2). Thus,
Eq. (10) effectively reduces to ∂t1A = 0 for all resonances.
Using Eq. (9), the solution of Eq. (8b) can be written as

u2 = �1d+
2

Aei(k0+kf )x0 + �1d−
2

(1 − δn,2)Aei(k0−kf )x0

+ λ

9k4
0

A2e2ik0x0 + 2λ

k4
0

|A|2 + c.c., (11)

where d± = [kf (2k0 ± kf )]−2.
The highest order contribution to be considered here, u3,

satisfies Eq. (8c). Applying the solvability condition in this
case, using Eqs. (9) and (11) for u1 and u2, we find

∂t2A =
[

1 + �2
1

4
(d− + d+ − d−δn,2)

]
A − η|A|2A

+ 4k2
0∂

2
x1

A + [�1λζ1 e−3iν1x1A
2]δn,3

+
[
�2

2
e−2iν1x1A


]
δn,2 +

[
�1λ(ζ1e

iν1x1A2

+ ζ2e
−iν1x1 |A|2) + �2

1 d−
4

e−2iν1x1A


]
δn,1, (12)
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where

ζ1 ≡ d− + 1

18k4
0

, ζ2 ≡ d− + d+ + 1

k4
0

, η ≡ 3 − 38λ2

9k4
0

.

(13)

Note that ζ1 and ζ2 are positive. We also have to demand that η

is positive, otherwise the expansion has to be extended to fifth
order in |ε|1/2. This constrains the coefficient of the quadratic
term to λ < k2

0

√
27/38.

The amplitude equation can be now obtained by combining
Eqs. (10) and (12) using the chain rule ∂tA = ε1/2∂t1A +
ε2/2∂t2A. Rescaling back to the fast variables and to the original
forcing strength γ and detuning ν,

�1 = γ

|ε|1/2
(1 − δn,2), �2 = γ

|ε| , ν1 = ν

|ε|1/2
,

we obtain

∂tB =
[
ε + γ 2

4
(d− + d+)(1 − δn,2)

]
B − η|B|2B

+ 4k2
0(∂x − iν)2B + [γ λζ1B


2]δn,3

+
[
γ

2
B


]
δn,2 +

[
γ λ(ζ1B

2 + ζ2|B|2) + γ 2d−
4

B


]
δn,1,

(14)

where

B(x1,t1, . . .) = |ε|1/2Aeiν1x1 . (15)

In terms of the amplitude B the leading order form of the
solution Eq. (4) is

u(x0,x1,t1, . . .) ≈ Bei
kf

n
x0 + c.c. (16)

This form is especially convenient, for constant solutions of Eq. (14) describe wavenumber-locked solutions of Eq. (1), the
wavenumbers of which are related to the forcing wavenumber by the ratio kf /n. An equivalent form for the space-independent
amplitude Eq. (14) is obtained by expressing B and B∗ in terms of ρ = |B| and φ = arg B:

ρt = ρ

[
ε − 4k2

0ν
2 + γ 2

4
(d− + d+)(1 − δn,2)

]
− ηρ3 + [γ λζ1ρ

2 cos 3φ]δn,3 +
[
γ

2
ρ cos 2φ

]
δn,2

+
[
γ λ(ζ1 + ζ2)ρ2 cos φ + γ 2d−

4
ρ cos 2φ

]
δn,1, (17)

φt = −[γ λζ1ρ sin 3φ]δn,3 −
[
γ

2
sin 2φ

]
δn,2 −

[
γ (ζ2 − ζ1) λρ sin φ + γ 2d−

4
sin 2φ

]
δn,1.

Note that for n � 3, up to the third-order analysis considered
here, the phase equation in Eq. (17) has discrete phase
solutions,

φ1 = (2m + 1)
π

n
, φ2 = 2m

π

n
, m = 0,1, . . . ,n − 1, (18)

where we distinguished between a group φ1 of odd-phase
solutions and a group φ2 of even-phase solutions. The
multiplicity of phase solutions within each group is related
to the discrete translational symmetry, x → x + 2mπ/kf ,
of Eq. (1), which implies the invariance of the amplitude
Eq. (14) under the transformation B → B exp (2πim/n). In
the following we will refer to this symmetry as “translation
symmetry.”

In deriving the amplitude Eq. (14) we considered only
particular solutions of Eqs. (8) for ui , instead of general
solutions, which would contain undetermined amplitudes or
“free fields” for the different modes. In principle, these fields
can be determined by demanding commutativity between
time derivatives of the amplitude [17], e.g., ∂t1∂t2A = ∂t2∂t1A.
Implementing these conditions, however, turned out to be too
hard. Nevertheless, the amplitude Eq. (14) does provide good
quantitative approximations, at least for sufficiently small γ

and λ, as we will shortly see. We note that Eq. (14) reduces to
known equations when the inversion symmetry is reintroduced
(λ = 0) [13,14].

IV. RESONANT PERIODIC SOLUTIONS

The existence range and stability properties of periodic
wavenumber-locked solutions of Eq. (1) can be obtained by
studying constant solutions of the amplitude Eq. (14) or its
equivalent form Eq. (17). In the following subsections we de-
scribe such studies for different n : 1 resonances. The stability
analysis is restricted to uniform perturbations for which the
space-derivative terms in Eq. (14) drop out. The dynamics of
such perturbations are determined by the eigenvalues of the
Jacobian matrix:

J (B,n) =
(

C D

D
 C


)
, (19)

where

C =
[
ε − 4ν2k2

0 + γ 2

4
(d− + d+)(1 − δn,2)

]

+ γ λ(2Bζ1 + B
ζ2)δn,1 − 2|B|2η,
(20)

D = −B2η +
(

d−γ 2

4
+ B0λζ2γ

)
δn,1 + γ

2
δn,2

+ 2γ λζ1B

δn,3,

and B = ρ exp (iφ) represents the constant solution consid-
ered. The eigenvalues of J are determined using the formula

σ = Tr(J )

2
±

√[
Tr(J )

2

]2

− Det(J ). (21)
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To test the analytical results for the existence ranges of the
various solutions we conduct numerical continuation studies
of Eq. (1) [18].

A. 1 : 1 resonant solutions

For n = 1, Eqs. (17) reduce to

ρt = ρ

[
ε − 4k2

0ν
2 + γ 2

4
(d− + d+)

]
− ηρ3

+ γ λ (ζ1 + ζ2) ρ2 cos φ + γ 2d−
4

ρ cos 2φ, (22)

φt = −γ (ζ2 − ζ1)λρ sin φ − γ 2d−
4

sin 2φ,

and admit the following solutions:

ρ±(φ) = γ λ (ζ1 + ζ2)

2η
cos φ ±

√
ε − ε1

η
,

(23)
φ = {φ1,φ2},

where φ1 = π is the odd-phase solution and φ2 = 0 is the
even-phase solution [see Eq. (18)] and

ε1 = ε2 − γ 2λ2(ζ1 + ζ2)2

4η
,

(24)

ε2 = 4k2
0ν

2 − γ 2

4
(2d− + d+).

According to Eq. (23), ρ−(φ1) is always negative and
therefore cannot be a solution. Moreover, ρ−(φ2) exists for
ε1 � ε � ε2, but inserting this solution into the eigenvalue
expression Eq. (21) reveals that it is always unstable.

Figure 1(a) shows bifurcations diagrams for 1 : 1
wavenumber-locked solutions for a system with an inversion
symmetry (λ = 0) and for a system that lacks that symmetry
(λ �= 0). The solid lines (stable solutions) and the dashed
lines (unstable solutions) were calculated using Eqs. (23)
and (21). The dots show existence range results obtained
numerically from Eq. (1) using a continuation method. In
the symmetric case (gray line), the φ1 and φ2 solutions
coincide and appear in a supercritical bifurcation at ε = ε2 .
Furthermore, the solutions are stable to uniform perturbations.
In the asymmetric case (black lines) the degeneracy of the
solution is lifted, and while the bifurcation of the φ1 solution
is supercritical, the bifurcation of the φ2 solution is subcritical.
In both bifurcations the zero solution is destabilized at ε = ε2,
but the φ2 solution extends to lower ε values and disappears
in a fold bifurcation at ε = ε1 < ε2, where a large-amplitude
solution and a small-amplitude solution merge. The solution
branch ρ+(φ2) is stable for all ε values, while the solution
branch ρ+(φ1) loses stability at ε = ε3, where

ε3 = ε2 + γ 2d−
[
ηd− + 2λ2

(
ζ 2

2 − ζ 2
1

)]
4λ2(ζ1 − ζ2)2

. (25)

The 1 : 1 resonance domains in the forcing-parameters
plane (γ,kf /k0) are shown in Fig. 1, where panels (b) and

(a)

(b) (c)

(d) (e)

FIG. 1. The 1 : 1 resonance. Panel (a) shows a bifurcation
diagram of 1 : 1 wavenumber-locked solutions. Solid (dashed) curves
indicate the stable (unstable) analytical solutions Eq. (23), and the dots
denote numerical solutions of Eq. (1). Black curves represent a system
that lacks an inversion symmetry with (λ = 0.6), while gray curves
represent a symmetric system (λ = 0). Parameters for panel (a):
γ = 0.02, kf /k0 = 1.01. Panels (b) through (e) show existence and
stability domains of resonant solutions—the inner domains bounded
by the black and gray curves, where black refers to an asymmetric
system and gray to a symmetric system. Panels (b) and (c) show
the domains of the φ2 solution below (ε = −0.02) (b) and above
(ε = 0.02) (c) the instability threshold ε = 0 of the zero state in the
unforced system. Panels (d) and (e) show the same information for
the φ1 solution. The thin black line in panel (e) denotes marginal
stability of the φ1 solution. Below this line the solution exists but is
unstable.

(c) correspond to the φ2 solution and panels (d) and (e) to
the φ1 solution. For negative ε the lack of inversion symmetry
extends the resonance range of the φ2 solution [panel (b)] but
leaves the resonance range of the φ1 solution unaffected [panel
(d)]. For positive ε the lack of inversion symmetry has opposite
effects on the resonance ranges of stable φ1 and φ2 solutions;
while the range is extended for the φ2 solution [panel (c)] it is
reduced for the φ1 solution [panel (e)]. This range reduction
occurs for relatively low values of γ , as demarcated by the
thin line in panel (e), below which solution φ1 exists but is
unstable.

B. 2 : 1 resonant solutions

For n = 2, Eqs. (17) reduce to

ρt = ρ
(
ε − 4k2

0ν
2
) − ηρ3 + γ

2
ρ cos 2φ,

(26)
φt = −γ

2
sin 2φ,
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(a)

(b) (c)

FIG. 2. The 2 : 1 resonance. Panel (a) shows a bifurcation
diagram of 2 : 1 wavenumber-locked solutions. Solid (dashed) curves
indicate the stable (unstable) analytical solutions Eq. (27), and the dots
denote numerical solutions of Eq. (1). Black curves represent a system
that lacks an inversion symmetry with (λ = 0.5), while gray curves
represent a symmetric system (λ = 0). Each of the upper solution
branches denoted by ρ(φ2) represent two translationally symmetric
even-phase solutions, φ2 = {0,π}. These solutions are stable in
their entire existence range, unlike the lower solution branches,
denoted by ρ(φ1), which represent two translationally symmetric
odd-phase solutions, φ1 = { π

2 , 3π

2 } and are unstable. Parameters for
panel (a): γ = 0.02, kf /k0 = 2.02. Panels (b) and (c) show existence
and stability domains of resonant even-phase solutions below (ε =
−0.02) (b) and above (ε = 0.02) (c) the instability threshold ε = 0.
Note the overlap of the black and gray curves, both of the solid
curves and of the curves delineated by the dots, which reflects the
independence of the resonance domains on λ.

and admit the following solution sets:

ρ(φ) =
√

ε − 4k2
0ν

2 + γ

2 cos 2φ

η
,

(27)
φ = {φ1,φ2},

where according to Eq. (18) φ1 = {π
2 , 3π

2 } and φ2 = {0,π}.
Denoting

ε± ≡ 4k2
0ν

2 ± γ

2
, (28)

we find from Eqs. (27) that the φ1 solutions exist for ε � ε+,
whereas the φ2 solutions exist for ε � ε−. Using the solutions
B = ρ(φ) exp (iφ) with φ = φ2 in Eq. (21) we find that these
even-phase solutions are stable in their entire existence range
while the odd-phase solutions with φ = φ1 are unstable in
their entire existence range. The bifurcation diagrams for these
solutions for λ = 0 and for λ > 0 are shown in Fig. 2(a). Note

that the phase equation in Eq. (26) is independent of λ. As
a consequence the solutions Eq. (27) for the two even-phase
solutions, φ2 = {0,π}, are identical, ρ(0) = ρ(π ). This holds
both in the symmetric case (λ = 0) and in the asymmetric
case (λ > 0). That is, each of the stable solution branches
in the bifurcation diagram (in black and in gray) represents
two overlapping solution branches, one for the even-phase
solution φ = 0 and one for the even-phase solution φ = π .
This is unlike the 1 : 1 resonance, which is also characterized
by bistability of φ = 0 and φ = π phase states, except that
the former state is an even-phase solution, whereas the latter
is an odd-phase solution [in the sense of Eq. (18)], and for
λ > 0 they are not identical, as the two solution branches in
Fig. 1 denoted by ρ+(φ2) and ρ+(φ1) indicate. The similarity of
solutions for λ = 0 and λ > 0 derive from the fact that λ only
appears in Eqs. (26) in the parameter η, and the breaking of
the up-down symmetry simply amounts to the renormalization
of the coefficient of ρ3.

It is interesting to note that for the 2 : 1 resonance, the
amplitude equation obtained for a system that undergoes a
finite wavenumber instability subjected to spatial parametric
forcing is similar in structure to that of a system that
undergoes a Hopf bifurcation subjected to temporal parametric
forcing [19–22]. There is a fundamental difference, though;
because of the parity symmetry x → −x of Eq. (1) all
coefficients in Eq. (14) must be real and the equation is
variational, i.e., has an an energy functional, which rules
out asymptotic dynamics. By contrast, the coefficients in the
amplitude equation for forced oscillatory systems are complex
valued in general, the equation is not necessarily variational
and asymptotic dynamical behaviors are possible (see also
Sec. V).

Figures 2(b) and 2(c) show the resonance range of stable
even-phase solutions in the parameter space γ versus kf /k0,
for ε < 0 and ε > 0, respectively (the unstable odd-phase
solutions φ1 = {π

2 , 3π
2 } are not shown). As can be seen from

the expression for ρ in Eq. (27) the existence range of the
resonant solutions is independent of λ, and the same holds
for the stability range of these solutions which coincide with
the existence range. As a result, the resonance ranges in
symmetric and asymmetric systems coincide (black and gray
lines or dots overlap). Again this is unlike the 1 : 1 reso-
nance where the asymmetry (λ > 0) changes the resonance
range.

C. 3 : 1 resonant solutions

For n = 3, Eqs. (17) reduce to

ρt = ρ(ε − ε2) − ηρ3 + γ λζ1ρ
2 cos 3φ,

(29)
φt = −γ λζ1ρ sin 3φ,

and admit the following solutions:

ρ±(φ) = γ ζ1λ cos(3φ)

2η
±

√
ε − ε1

η
,

(30)
φ = {φ1,φ2} ,
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where the thresholds ε1 and ε2 [not to be confused with
Eq. (24)] are given by

ε1 = ε2 − γ 2ζ 2
1 λ2

4η
,

(31)

ε2 = 4k2
0ν

2 − γ 2

4
(d− + d+),

and according to Eq. (18) φ1 = {π
3 ,π, 5π

3 }, φ2 = {0, 2π
3 , 4π

3 }.
According to Eqs. (21) and (30), the solutions ρ+(φ1) of an

asymmetric system (λ �= 0) exist for ε > ε2 but are always un-
stable, whereas the solutions ρ−(φ1) do not exist. The solutions
ρ+(φ2) exist and are stable for ε > ε1, whereas the solutions
ρ−(φ2) exist in the range ε1 < ε < ε2 but are unstable. This
behavior is similar to the 1 : 1 resonance in that the ρ+(φ2)
solutions appear in a subcritical bifurcation and the ρ+(φ1)
solutions appear in a supercritical bifurcation. Unlike the
1 : 1 resonance the ρ+(φ1) solutions in the 3 : 1 resonance
are always unstable, thus no bistability range of even-phase
solutions ρ+(φ2) and of odd-phase solutions ρ+(φ1) exists,
as in the 1 : 1 resonance. The 3 : 1 resonance still gives rise
to multiplicity of stable phase states—the three translationally
symmetric even phases φ2 = {0, 2π

3 , 4π
3 }. In the symmetric case

(a)

(c)(b)

FIG. 3. The 3 : 1 resonance. Panel (a) shows a bifurcation
diagram of 3 : 1 wavenumber-locked solutions. Solid (dashed) curves
indicate the stable (unstable) analytical solutions Eq. (30), and the
dots denote numerical solutions of Eq. (1). Black curves represent a
system that lacks an inversion symmetry with (λ = 0.7), while gray
curves represent a symmetric system (λ = 0). The stable solution
branch ρ+(φ2) describes three translationally symmetric even-phase
solutions φ2 = {0, 2π

3 , 4π

3 }. The thresholds ε1, ε2 are given in Eq. (31).
Parameters for panel (a): γ = 0.1, kf /k0 = 3.02. Panels (b) and
(c) show existence and stability domains of resonant even-phase
solutions below (ε = −0.002) (b) and above (ε = 0.002) (c) the
instability threshold ε = 0 for asymmetric (black) and symmetric
(gray) systems.

(λ = 0) the solutions appear in a supercritical bifurcation at
ε = ε2 but the phase φ is undetermined, as the phase equation
in Eq. (29) implies.

Figures 3(b) and 3(c) show the resonance domains of stable
even-phase solutions in the parameter space γ versus kf /k0,
for ε < 0 and ε > 0, respectively. Like in the 1 : 1 resonance
(but unlike the 2 : 1 resonance) the asymmetry extends the
boundaries of the resonance domains of even-phase solutions,
but to a lesser extent.

V. PHASE PATTERNS

All three resonances considered here involve multiplicity of
stable phase states. In the 1 : 1 resonance we found bistability
of an even-phase solution, φ = 0, and an odd-phase solution,
φ = π . Breaking the inversion symmetry of the system breaks
the symmetry between these two phase states, as Fig. 1(a)
shows. In the two higher resonances the odd-phase solutions
are unstable but the system shows multiplicity of stable
even-phase solutions, φ = 0 and φ = π in the 2 : 1 resonance,
and φ = 0, φ = 2π/3, and φ = 4π/3 in the 3 : 1 resonance.
Moreover, these solutions remain translationally symmetric
even for asymmetric systems (λ �= 0).

Multiplicity of phase states allow for phase-fronts that
shift the phase from one state to another within narrow
domains in the physical space. Such fronts and their stability
properties have been thoroughly studied in the context of
temporally forced oscillatory systems [23–25]. These fronts
constitute the building blocks for localized solutions [26–28]
and for a variety of spatially extended patterns, including
traveling waves, standing waves, and chaotic patterns [29,30],
many of which have been observed in experiments [31–35].
The existence of an energy functional in the present con-
text [Eq. (3)] rules out asymptotic dynamical behaviors as
observed in forced oscillatory systems. Yet, phase fronts do
exist and form transient or stationary patterns as we now
discuss.

(a) (b) (c)

FIG. 4. (Color online) Phase-front dynamics in the absence of
an inversion symmetry. Shown are space-time plots, obtained by
numerical integration of Eq. (14), of phase fronts that separate
different phase states, as labeled, within the 1 : 1 (a), 2 : 1 (b), and
3 : 1 (c) resonances. Darker shades correspond to higher phase values.
The translation asymmetry between the two phase states in the 1 : 1
resonance induces front motion and the convergence to the zero-phase
state. The translation symmetry that relates the phase states in the 2 : 1
and 3 : 1 resonances results in stationary fronts and phase patterns.
Parameters: ε = 0.01, λ = 0.5, γ = 0.3, and kf /k0 = 0.02 + n.
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The bistability of uniform phase states within the 1 : 1
resonance allows for phase fronts that shift the phase by
π . In asymmetric systems (λ �= 0) the two states are not
translationally symmetric and the phase fronts propagate so
as to minimize the energy functional Eq. (3). This leads to
transient patterns as the space-time plot in Fig. 4(a) implies.
We verified that the same behavior holds for the original
forced SH Eq. (1) (i.e., no front pinning has been found). The
bistability of uniform phase states within the 2 : 1 resonance
allows for stationary phase patterns. This is because of the
translation symmetry that relates the two phase states and their
equal energies, which make the phase fronts stationary as the
space-time plot in Fig. 4(b) shows. This behavior holds also for
the tristability of translationally symmetric phase states within
the 3 : 1 resonance as Fig. 4(c) shows. We note that in terms
of the solution Eq. (16) a phase pattern involving an array of
phase fronts translates to a periodic pattern that is disrupted by
an array of defects.

VI. CONCLUSION

We have studied a parametrically forced SH equation with
broken inversion symmetry as a simple model of pattern
forming systems that are subjected to periodic spatial forcing.
The study involved weak nonlinear analysis, complemented
by numerical studies, of the three basic resonances n : 1,
n = 1, 2, 3. Two aspects are shared by all resonances. The
first is the higher-amplitude patterns obtained in asymmetric
systems (λ �= 0) compared to the symmetric ones (λ = 0). The
second aspect is the stabilizing effect of the forcing, i.e., the
appearance of stable patterns below the threshold ε = 0 of
unforced systems. There are, however, substantial differences
between these resonances.

The 1 : 1 resonance is the only resonance that has stable
odd-phase solutions. The existence of such an odd-phase
solution (φ1 = π ) along with a stable even-phase solution
(φ2 = 0) leads to bistability of phases states, a quite surprising
result. In the presence of an inversion symmetry (λ = 0) these
two phase states are translationally symmetric, as Fig. 1(a)
shows, but breaking the inversion symmetry (λ �= 0) removes
the symmetry between the two phase states. Since their
energy-functional values are no longer equal, phase fronts that
are biasymptotic to the two phase states propagate. As a result,
initial spatial distributions of the two phase states culminate
in a single phase state, the state that minimizes the energy
functional. The higher 2 : 1 and 3 : 1 resonances both have
unstable odd-phase solutions, but show multiplicity of stable
even-phase solutions, φ2 = {0,π} for the 2 : 1 resonance, and
φ2 = {0, 2π

3 , 4π
3 } for the 3 : 1 resonance. While the even-phase

(φ2) and the odd-phase (φ1) solutions are not symmetric
for λ �= 0 (because of the broken inversion symmetry) the

even-phase solutions among themselves, i.e., within φ2, are
still translationally symmetric. As a consequence, phase fronts,
and patterns consisting of widely separated phase fronts as
building blocks, are stationary (Fig. 4).

There is another substantial difference, this time between
the 2 : 1 resonance and the other two resonances. The pattern-
forming instability of the zero state is supercritical in the 2 : 1
resonance and subcritical in the 1 : 1 and 3 : 1 resonances,
implying bistability ranges of the patterned states and the
zero state in the latter two resonances. Furthermore, while
the inversion asymmetry extends the ranges of resonant even-
phase solutions in the 1 : 1 and 3 : 1 resonances, it has no effect
on the 2 : 1 resonance range.

We restricted the analysis to n = 3 because higher reso-
nances require higher-order contributions to Eq. (14). Whether
the 3 : 1 resonance is a good representative of higher reso-
nances in its basic properties—a subcritical pattern forming
instability and multiplicity of n translationally symmetric,
stable even-phase solutions—remains an open question. In this
study we considered parametric forcing of a linear term. We
expect other forms of forcing, additive or parametric forcing
of nonlinear terms, to result in different behaviors, which have
yet to be explored.

The results predicted here can be tested in controlled
laboratory experiments. A possible candidate system is the
CDIMA reaction in a quasi-1D cell that is spatially forced
by modulating the cell temperature (to ensure parametric
forcing)—in a parameter range of Turing patterns [3]. An
example of a prediction that can be tested is the propagation
of a phase front that shifts the pattern phase by π in the 1 : 1
resonance, and the nonpropagation of a similar front in the 2 : 1
resonance [see Figs. 4(a) and 4(b)].

We also restricted the analysis to one spatial dimension.
Breaking the inversion symmetry in two-dimensional systems
can have dramatic effects on the type of patterns that emerge
from the unstable zero state. In the absence of forcing
hexagonal patterns often emerge [36]. How are these patterns
related to rectangular patterns found in symmetric forced
systems [11] when the inversion symmetry is removed, is
yet another open pattern formation question. This question is
also significant for practical applications of spatial forcing,
particularly in restoration ecology where periodic ground
modulations are used to restore degraded vegetation [9].
Finally, this work may provide useful insights into the study
of localized structures in the Swift-Hohenberg equation [37],
especially with regard to resonances other than the 1 : 1.
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